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We show that, if the linearization of a map at a fixed point leaves invariant a 
spectral subspace which satisfies certain nonresonance conditions, the map 
leaves invariant a smooth manifold tangent to this subspace. This manifold is as 
smooth as the m a p - - w h e n  the smoothness  is measured in appropriate scales--  
but is unique among C L invariant manifolds, where L depends only on the spec- 
trum of the linearization or on some more general smoothness  classes that we 
detail. We show that if the nonresonance conditions are not satisfied, a smooth 
invariant manifold need not exist, and we also establish smooth dependence on 
parameters. We also discuss some applications of these invariant manifolds and 
briefly survey related work. 

KEY WORDS: Invariant manifolds; linearizations: partial linearizations; 
asymptotic behavior; renormalization group; invariant lbliations. 

1. I N T R O D U C T I O N  

Besides their intrinsic appeal, invariant manifold theorems are interesting 
in dynamics because they provide landmarks which organize the long-time 
behavior. 

From this point of view, having more invariant manifolds is quite 
desirable, since it means having more tools for the analysis of a dynamical 
system. In particular, it is often the case that associated to invariant 
manifolds for operators acting on sections in the tangent bundle one can 
associate other invariant structures in the manifold itself. For example, one 
of the standhrd constructions of stable and unstable foliations 114) includes 
as one of the steps applying the stable manifold theorem to the operator  f .  
acting on vector fields by [f,v](x)= Df(f-I(x))v(f-I(x)). The invariant 
manifolds constructed here will also lead to invariant structures on the 
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manifold. Nevertheless they are not in general foliations, as shown in ref. 19 
(these structures seem to have been considered first in ref. 31). We will 
discuss some of their uses later. For  example, they play a role in rigidity 
theory. We will also show that they can be used to provide obstructions to 
regularity of attractive invariant circles with rational rotation number 
(such circles appear after Hopf  bifurcations). 

An important motivation for this paper is the study of renormalization 
group transformations. Even if a precise analytical definition of a renor- 
malization group operator is fraught with technical difficulties (see, e.g., 
refs. 9 and 29), it is fruitful to study finite-dimensional maps that are 
caricatures of the real situation (see ref. 4, Chapter 3; ref. 23, Section 5, 
Appendix E). In that picture, different ways to approach the fixed point 
correspond to different properties of finite-size scale fluctuations. An 
example of physical properties that can be described by properties of the 
approach to the fixed point can be found in ref. 13. In ref. 23 it is argued 
that the nonresonant invariant manifolds constructed here correspond to 
the beta functions or renormalization group theory in the case that the 
latter are smooth (as is assumed in perturbative calculations). The renor- 
malization group in dynamical systems--especially in the period-doubling 
case--is much better behaved than the renormalization group in statistical 
mechanics and in that case it is sometimes possible to write well-defined 
renormalization maps that are analytic in an appropriate space and which 
have a compact derivative (see, e.g., refs. 5, 6, and 35) (these motivations 
are why we choose to prove our results in the generality of Banach spaces). 

If the system were linear, a very natural invariant set would be an 
spectral subspace. For a nonlinear system close to a fixed point - -and hence 
approximable by the derivative at the fixed point - -one can ask if there are 
analogues of the spectral subspaces of the derivative which are invariant for 
the full nonlinear system. 

The classical theory of invariant manifolds establishes the existence of 
invariant manifolds associated with spectral subsets which are disks around 
the origin or complements of disks around the origin. Usually the manifold 
associated to { z e C [  Izl ~<p < 1} is called the strong stable manifold, that 
associated to {z e C IIzl < 1 } is called the stable manifold, those associated 
to sets of the form {z~CIIzl~<l} are called center stable manifolds, 
and those associated to sets { z e C ]  Izl ~<p> 1} are called pseudostable 
manifolds. We have used "is" or "are" on purpose to indicate whether 
uniqueness under local assumptions holds or not. We refer to Section 6 for 
other results which also include uniqueness under global assumptions. 

On the other hand, for some finite-dimensional systems, one can apply 
the Sternberg linearization theorem and conclude that the system is equiv- 
alent to the linearization expressed in another smooth system of coordinates. 
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Since the spectral subspaces of the derivative are invariant under the 
linearized dynamics, their image under the change of variables that 
linearizes the map will be invariant under the full map. Hence, the non- 
linear map may leave invariant some smooth manifolds that correspond to 
any spectral subspaces, in particular to some spectral subspace not con- 
sidered in the classical invariant manifold theory. 

Even if the above argument indicates that the classical theory of 
invariant manifolds is not as general as possible, the theory based on the 
Sternberg linearization theorem is not very satisfactory. For  example, for 
infinite-dimensional systems the nonresonance conditions become harder to 
verify--or even false if the spectrum includes open sets. Even in finite 
dimensions, the conditions of Sternberg theorem are not C ~ open. More- 
over, since the linearizing changes of variables provided by the Sternberg 
linearization theorem are highly nonunique, it seems that the smooth 
invariant manifolds produced this way are also not unique. 

In this paper we try to obtain a compromise between the Sternberg 
linearization theorem and the classical invariant manifold theory. The 
proofs will start as in the Sternberg linearization theorem, using non- 
resonance assumptions to eliminate undesired terms, but we will switch 
as soon as possible to the- -much easier than linearization--invariant 
manifold theory. 

This will allow us to prove some invariant manifold theorems for 
spectral subspaces satisfying some mild nonresonanee conditions that per- 
sist for open sets of problems. Moreover, there will be local conditions that 
guarantee uniqueness. Once this uniqueness is established, it makes sense 
to study the dependence on parameters. We show that indeed these mani- 
folds depend smoothly on parameters and compute explicit formulas for 
the derivatives. These formulas can be used to justify some perturbative cal- 
culations of beta functions in renormalization group theory at least in the 
caricatures where all the operators are well-defined and well-behaved maps. 

We will also provide examples that show that if those nonresonance 
conditions are not met, the conclusions are false. 

The ideas presented above are closely related to partial normal forms, 
that is, showing certain terms are irrelevant for the dynamics since they can 
be eliminated just by switching to appropriate systems of coordinates. 
From the renormalization group point of view the discussion of when a 
term cannot" be eliminated is quite interesting. There is a class of theorems 
that state that if there are maps that agree at the origin to a high enough 
order, then there is a differentiable mapping that sends one into the other. 
One can apply these theorems to systems after applying the finite normal 
form calculations to conclude that there is a true differentiable transforma- 
tion that maps one into another. 
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Note that if we express the dynamics in a system of coordinates where 
some terms in the map are not present, we can sometimes obtain uniform 
estimates about all the iterates of the map in this system of coordinates. 
Then these estimates can be read off in the original system. This type of 
argument is often used in dynamical systems to obtain very uniform con- 
trol of iterates. It is sometimes also used in renormalization group 
arguments as a way to control the approach of surfaces defining an inter- 
esting phenomenon to critical surfaces. 

In Section 5 we just quote some results on these problems of partial 
linearizations. We point out that, compared to the method of graph trans- 
forms developed in Section 3, they have the advantage that they can 
produce invariant manifolds whose spectral subset straddles the unit circle. 
Nevertheless, in the case that the spectral subset straddles the unit circle, 
the invariant manifolds produced by the partial linearization method are 
much less differentiable than the map. When, as in the case considered in 
this paper, the spectral subsets are inside the unit circle the partial 
linearization method produces manifolds that are almost as differentiable 
as the map (e.g., Theorem 5.1 in ref. 2 produces C"-  J + Lip.,~l,t~ manifolds for 
C" maps, but this can be improved). The partial linearization method 
seems to require that the maps are invertible. Even if the partial lineariza- 
tion method yields information for a whole neighborhood, it is much more 
difficult to implement numerically than the graph transform methods 
described in this paper. 

Finally, in Section 6 we review briefly other work on invariant mani- 
folds other than the classical stable, strong stable, etc., and in Section 7 we 
sketch some applications of the results presented here. 

2. N O T A T I O N  A N D  S T A T E M E N T  OF THE M A I N  RESULTS 

In this paper X will be a Banach space (not necessarily separable) over 
the reals or over the complex, f will be a C", 1 ~< r ~< or, co, mapping from 
X to itself such that it has a fixed point, which we will place at the origin 
[i.e., f(O) = 0]. We will call Df(O) = A and write f ( x )  = ,,ix + N(x) .  

The question we will address is the existence of invariant manifolds 
passing though the fixed point, that is, submanifolds W of X such that 
f ( w ) = w ,  o~w. 

In the cases that we will consider the problem is equivalent to a local 
version, so that we just need to assumef i s  defined in a small neighborhood 
of the origin. 

The guiding idea behind the results presented here is that, on small 
scales, f is a perturbation of A and the invariant manifolds o f f  should be 
very similar to those invariant under A. 
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The most natural invariant manifolds for a linear operator (they are 
not the only ones!) are invariant subspaces associated to spectral projec- 
tions. If X is a complex space, to each closed subset of the spectrum 
bounded away from the rest of the spectrum we can associate a spectral 
projection whose range is a closed subspace. (If X is real, the subspaces are 
associated to subsets of the spectrum as above which are also invariant 
under complex conjugation). C33"21~ 

The invariant manifolds we will construct are perturbations of these 
spaces. As is often the case with perturbation theory, it is very advan- 
tageous to try to remove some terms with an appropriate change of 
variables. Notice that if we could eliminate all of them as in the Sternberg 
linearization theorem, the result would follow: the invariant manifolds 
would be the images under the linearizing map of the invariant subspaces. 
The problem with applying the Sternberg linearization theorem in infinite- 
dimensional Banach spaces is that the nonresonance conditions fail in 
open sets of maps. (The spectrum of the linearization may have nonempty 
interior.) 

One can observe that the best known results on the existence of 
invariant manifolds, the strong stable, stable, center stable, center, center 
unstable pseudostable manifolds] t5,22, ~0,16-18.37) amount to considering sub- 
sets of the spectrum obtained by intersecting it with disks, complements of 
disks, or circles. 

We will be able to generalize those results, in that we will be able to 
consider more general sets. (At the end of the paper we will list other 
results that go in this direction.) 

We will not be able to associate invariant manifolds to all the subsets 
of the spectrum of A, but will have to impose "nonresonance" conditions 
so that some eliminations can be performed. We will, furthermore, show 
that if these nonresonance conditions fail, there are counterexamples to the 
theorems considered here (or slightly stronger versions). 

The technique we will use is the "graph transform" coupled with some 
manipulations standard in "normal form" theory. These manipulations, 
even if they simplify the proof, are not really necessary and it is possible to 
construct a proof without using them (we will give a sketch of these alter- 
native methods). 

Since ref. 25 (parts of which are reproduced in ref. 28) contains not 
only an excellent exposition of the graph transform method for invariant 
manifolds, but also an exposition of normal forms, we refer the reader there 
for some basic results. 

N o t a t i o n .  Given a splitting X =  E S ~  E U, we will denote by H s, H u  
the corresponding projection. 
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Given a function N:X~--~X, we will define Ns (resp. Nu) by 
Ns. u(Ilsx,  I lux)  = Ils. uN(x). 

If the splitting is invariant under a linear operator A, we will call 
As, A u the restrictions of A to those subspaces. This is slightly inconsistent 
with the previous convention, but is also customary and will not lead to 
confusion. 

Finally, we will call BS(l) the ball of radius l around 0 in the space E s, 
and analogously for all spaces. If some of the indexes are clear from the 
context, we will omit them. 

Our main theorem is as follows: 

Theorem 2.1. Let X be a real or complex Banach space, f a C ~ 
mapping, r e  N w {c~, co}, r~> 1, f ( 0 ) = 0 ,  Df(O)=A. Assume that there is 
a decomposition of X into closed subspaces X = E S ~ E  u with bounded 
projections H s, H u, respectively, such that: 

(i) The splitting is invariant under A (use the notation As,  Au for 
the restrictions). 

(ii) a(A s) bounded away from a(Au). 
(iii) a(Au) bounded away from zero. 

(iv) a(As) contained strictly inside the unit disk. 

We will call L an integer big enough so that 

(sup{ Itl [ t e a(As)} )L (sup{ Itl - ' I t  e a(A u)} ) < 1 

and we will assume that 

(v) L <r. 

(vi) If I < i < L ,  then [a(As)] ina(Au)=~J .  Where [ a ( A s ) ] ; =  
{ X  I ' X  2 . . . . .  x i l x j e c r ( A s )  , 1 <~j<~i}. 

(vii) The function N(x )= f ( x ) - -A (x )  has sufficiently small C L+~ 
norm when restricted to a ball of radius 1 around 0. (The smallness condi- 
tions depend only on the spectrum of A.) 

Then there is a function w: BS( 1 ) ~ U such that: 

(a) The graph of w is invariant under f 
(b) w is C"-  t + uio~h.~ 

Moreover, w is unique among the C t functions satisfying (a). 

R e m a r k .  Given a function f :  X~--~ X, f ( 0 ) = 0 ,  and Df(O) satisfying 
the assumptions (i)-(vii), f ; . (x)=(1/2)f(2x)  will satisfy the smallness 
hypothesis for 2 small enough. Indeed, recall that the smallness conditions 
only depend on DfAO), which does not depend on 2. On the other hand, 
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N;. gets smaller in the C" sense as 2 gets small. If  wj. is the function whose 
graph is invariant under J)., w = 2 w ( x / 2 )  will have a graph invariant 
u n d e r f  Note  that f;. = A + N~ and that N;. converges to 0 in C" in the ball 
as 2 tends to zero. Therefore, assuming smallness conditions in N and con- 
sidering only a small neighborhood are equivalent. 

R e m a r k .  We call attention to the fact that even though we assumed 
in (iii) that Au is invertible, we are not assuming that A s  is invertible. In 
particular, for compact  operators,  we can assume that S consists of the 
most stable eigenvalues and some others (provided, of course, that the non- 
resonance conditions are met). 

R e m a r k .  Note that in (iv) we only require that the nonresonance 
condition holds for i/> 2. In particular, S could intersect with U. This arises 
if we take E s to be a subset of the full spectral subspace. For  example, in 
finite dimensions we could take S to correspond to an eigenvalue admitting 
several linearly independent eigenvectors and take E s the space corre- 
sponding to just one of the eigenvalues. We only need to assume the non- 
resonance conditions for order 2 or higher because we only need to 
eliminate quadratic and higher order terms. If S and U are disjoint, and 
hence a finite distance apart, E s and E U are the full spectral subspace. We 
will refer to E s and E U as the spectral subspaces associated to S and U 
even if they may not be the full spectral subspaces. When we discuss 
smooth dependence on parameters we will require that S, U are disjointed, 
to be able to establish smooth dependence of the spaces. 

R e m a r k .  It will be important  later that the smallness conditions we 
impose on N are only in C L and not in C". If  we want to consider C ~ f ' s ,  
we will have to do a different proof  for every finite r. It will be important 
that we can choose the same 2 in all cases so that the function w corre- 
sponding to different r's will be defined in the same domain. 

R e m a r k .  Condition (vi) will be referred to as the "nonresonance" 
condition. Its interpretation is obvious when the X is finite dimensional; it 
just means that the products of any set of less than L eigenvalues of A s  are 
not eigenvalues of A t,. 

R e m a r k .  We will derive later stronger uniqueness properties than 
those claimed in the theorem. In particular, Theorem 4.2 implies that the 
solution is unique among C '' '+'; with r e =  log IIA v tll/log IIAsll. Note that 
L = [1"o] + 1. 

R e m a r k .  Observe that if the spectral subset we consider is given by 
cr(A)c~ {zl Izl <~} ,  ~ <  1, Theorem2.1 reduces to the c~-stable manifold 
theorem characterized as the set of points x such that o ~ - ' f ' ( x )  remains 
bounded. In this case, the nonresonance conditions are obviously satisfied. 
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R e m a r k .  Note that by the definition of L, [a(As)]ic~a(Au)=;~ 
when i>~L. Hence, with (vi), the intersection is empty for all i e  N. From 
the presentation in the text, it is clear that the condition holds in a C ~ open 
set of mappings. 

R e m a r k .  The conclusion (b) of Theorem 2.1 can be improved to C". 
See the remarks after the proof  for details on the finite-dimensional case. 
C. Pugh pointed out that adapting the considerations in ref. 14, such a 
result is also true in infinite dimensions. Nevertheless, we will not have 
space to discuss it in detail in this paper. 

There are many equivalent norms we can use in X. Given an operator  
A, we can choose a norm in such a way that [IA[I ~<sup{lt[ [tea(A)} +e 
for any e > 0. Moreover, we could also choose the norm in such a way that 
the splittings associated to a finite number of closed subsets of the spectrum 
have projections of norm 1. We will henceforth assume such a norm, with 
a sufficiently small e, has been defined so that the L introduced in assump- 
tion (iv) of the theorem also satisfies 

IlZsll'- IIa ?fl II < I 

Note that all the smallness assumptions, etc., are to be understood in 
this norm. Since it is equivalent to the original one, all "sufficiently small" 
requirements in this norm are implied by "sufficiently small" in the original 
one. 

Theorem 2.1 will be derived from the following theorem, which we will 
prove first: 

Theorem 2.2. In the same setup as Theorem 2.1, do not assume 
(iv), but assume instead 

(iv') Nu(s, u) = 0 (llull L+ ~, Ilsll 2) near 0. 

Then, the same conclusions as in Theorem 2.1 hold, but we moreover 
have 

(c) IIw(s)ll=O(llsllL+'). 

Note that, under the conditions of Theorem 2.2, denoting by (s, u) the 
projections on the stable and unstable component,  we have 

f(s,u)=(Ass+Ns(s,u),Auu)+Cg(LlulL L+t, Ilsll 2) (2.1) 

Observe that if we ignore the high-order terms, the set corresponding 
to points with u = 0 is invariant under the dynamics. In a neighborhood of 
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this set the terms ignored are a very small perturbation and we will be able 
to construct the invariant manifold as a perturbation of the set {(s, 0)}. 

To simplify the arguments, we have stated the results only for integer 
regularities. The same argument applies to fractional regularities. 

Although we stated Theorem 2.1 and Theorem 2.2 for maps, there are 
corresponding statements for flows whose proof  follows from the statement 
for maps. 

If V is a C r vector field defined in a neighborhood of 0 and such that 
V(0)=0,  it is possible to define a local flow F, for Itl ~<~ defined in a 
neighborhood of 0. Since DV(O) is a bounded operator and DF, (0 )=  
exp(tDV(O)), we have 

Spec(DF,(0)) = exp(t Spec DV(O)) (2.2) 

and the spectral subspaces for DV(O) are spectral subspaces for DF,(0). 
Hence, if S c Spec(DV(0)) is contained in {z ~ C I Re(z) < 0}, it admits the 
spectral subspace E s and it satisfies, for 1 < j ~< L, 

sl,..., sj~ S ~ st + . . .  + sj~ Spec(DV(O) ) 

[where L is such that L max:~sRe(z)<min:~sp~ctt~v~ol~Re(z)]. Then 
exp(tS) satisfies the hypothesis of Theorem 2.1 for F,. Since the spectral 
subspaces are the same, observing that a manifold invariant for F,/,, is also 
invariant for F,, Itl, It~hi <~ to, n ~ ,  using the uniqueness statements of 
Theorem 2.1, we can conclude that the invariant manifolds produced by 
Theorem2.1 for / '1  and F~,/,,~ are the same whenever Itl, It~hi <~to, n~  ~. 
Hence, those produced for F, and F,t,,,/,,~, m, n ~ Z, are the same. By con- 
tinuity of F,, we conclude that the manifolds are the same for all Itl <~ to. 
Hence the manifold is invariant under the whole flow. 

The above argument generalizes without change to the situation where 
F, is a smooth semigroup generated by an unbounded vector field satis- 
fying (2.2). This situation arises very frequently with regard to partial dif- 
ferential equations. For  unbounded operators, (2.2) may fail, but it holds 
for several classes of unbounded operators of interest in connection with 
PDEs (e.g., normal). 

3. PROOF OF THEOREM 3.1 AND THEOREM 3.2 

As in ref. 25, the proof will consist in writing the invariant manifold as 
the graph of a function w: B S ( 1 ) ~  E U. The fact that the manifold is 
invariant will be equivalent to the fact that the function w is a fixed point 
of an operator ~-- acting on an appropriate space of smooth functions. The 

822/87/I-2-16 
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existence of such a fixed point will be established using a variant of the 
contraction mapping principle. 

First, we will prove the theorem when r < o~. We will take Y to be 

~ ' [ w ] ( x ) = A ~ J ( w ( A s x + N s . ( x ,  w ( x ) ) ) - N t s ( x ,  w(x))) (3.1) 

This operator was used in ref. 26, not in ref. 25. It is not exactly the 
graph transform, but is somewhat more manageable. The reason we define 
the operator is that if we compute f on a point of the graph of the w, we 
have 

f ( x ,  w ( x ) ) = ( A s x + N s ( x ,  w(x)), A u w ( x ) + N u ( x ,  w(x))) (3.2) 

This transformed point belongs to the graph of w if and only if the second 
coordinate is the result of applying w to the first. That  is, 

w(Asx + Ns(x ,  w(x))) = A uw(x) + No(x ,  w(x)) 

which, provided that all the compositions can be defined, is equivalent to 
w being a fixed point of~--. 

The operator .Y-- is well defined if []As[ ] + ][NsI[L, < 1. We will assume 
that N is small enough that indeed J -  is defined on functions on the unit 
ball of S. 

We will consider ~-- as acting on the following spaces: 

Z',I, ...... .- t = { w: BS( 1 ) v--. E v such that 

(a) w~ C" 

(b) Dkw(O)=O, O<~k <<.L 

(c) sup [[Dkw(x)ll<~l,O~k<~L 
x e /.~";I I ) 

(d) sup IIDL+;w(x)ll <~ei, 1 ~ i < ~ r - L }  
. v ~  B.s'l  i ) 

(3.3) 

We call attention to the fact that these spaces are convex subsets of C". 
Note that, because of condition (b), the w~ Z is determined uniquely by 
DLw. We will therefore consider Z endowed with the topology given by the 
norm 

liwll = liDLwll L~'"~'"' 

We also point out that by condition (b) we also have 

IID'wl[ L-,,-",,,, ~< (1/(L - i)!) IIDLwll L,,,.,,,, 

for O ~ i ~ L .  



Invariant Manifolds 221 

For  ease of notation we will suppress the BS(1) from the spaces, but 
L '~ is to be understood always to be on unit ball of E s. 

To apply a fixed-point theorem, our first task is to find a space that 
gets mapped into itself by J- .  

Proposition 3.1. Given some smallness assumptions on IID*NsI[ L'-, 
0 ~< k ~< L, it is possible to find e t ..... e,.-L > 0 in such a way that 

~-(x; , . . . . .~ ,_  L) = z',;, ......... ,. 

These e's can be found in a recursive consistent way: that is, if 7>  r and we 
have found a E --.a,._L, we can find a,._r+= ""a, ;_r+~ so that 

Y - ( z ' ,  ~,: ..... , : ,_ , . . , , r -  ,_ + ,  . ...... _ , ) C Z ; i ,  . . . . . . . . .  ,. .... , . + ,  . . . . . . . . .  ,. 

Proof. The fact that ~ - [w ]  satisfies (a), (b) if w does is quite easy. 
Since for functions satisfying (a), (b) we have for k < L  

Ilxll L - *  
IlD*w(x)ll <~ sup IIDLw(y)I[ ( L - k ) !  

y ~ Bx( I lx l l  ) 

to check (c), it suffices to check it for k = L .  
Taking L (recall L/> 2) derivatives of (4.1), we obtain 

D L Y [  w](x) = A {i I DCw(A sx + Ns(x, w(x) ))[ A s + DI Ns(x, w(x) ) 

+ D2Ns(x, w(x)) Dw(x)] | 

+ A ~ IDw(Asx + Ns(X, w(x))) D 2 N s ( x  , w(x)) DLw(x) 

-D2Nu(x ,  w(x) ) DLw(x) 

+ R  (3.4) 

where the remainder R is a polynomial all of whose terms contain a factor 
which is a derivative of N and derivatives of w up to order L -  1. 

Formula (3.4) can be established by observing that 

D~--[ w](x) = A ~ tDw(Asx + Ns(x, w(x)))[As + Dt Ns(x, w(x)) 

+ D2Ns(x, w(x)) Dw(x)]  

+ A ~ tDw(Asx + Ns(x, w(x))) D2Ns(x, w(x)) Dw(x) 

- D2Nu(x, w(x)) Dw(x) (3.5) 
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If we compute higher derivatives using the chain rule and the product rule, 
we see that the only way to produce terms involving L derivatives in 
DLY[w](x)  is to take derivatives in the factors Dw in (3.5). 

Since all the derivatives of w of order up to L are bounded by l, we 
can make this remainder as small as we please by making smallness 
assumptions on [INI[ c'-. 

The first term of (3.4) can be bounded by [[A ~'[] (HAs[ [ + 2 []N[[ c,) L 
and, by the assumption (iv), this can be made strictly smaller than 1 by 
assuming smallness conditions in [IN][ c'. The other terms can be bounded 
by 2 [[A~'[I I[Nl[c,, which clearly can be made as small as desired by 
assuming that I[N[[ c, is sufficiently small. 

In order to adjust conditions (d), we will not make further smallness 
assumptions for N, but rather adjust the gs. This is the recursion alluded 
to above that allows us to determine the e's. 

Taking L + i derivatives, we have, in a way similar to (3.4), 

D L + i j ' [  W](X) = A ~ tDw(Asx + Ns(x, w(x)))[A s + DINs(x,  w(x)) 

+ D2Ns(x, w(x)) Dw(x)] | + n 

+ A ~ IDw(Asx + Ns(x, w(x))) D2Ns(x, w(x)) D L + Iw(x) 

-D2Nu(x ,  w(x)) DL +iw(x) 

+ R  (3.6) 

where R, again, is a polynomial expression that involves only derivatives of 
w up to order L + i - 1  and derivatives of N. Hence, if N is fixed and w 
satisfies the inequalities in (d) up to i -  1, we can bound 

IIOL+iY[w](x)ll ~< [ IIA u tll( IIAsll + 2 [INII c,) L+i 

+ ( l lAU' l l+ l ) l lg l l c , ] e~+R(e~_ , . - - e~)  (3.7) 

Under the assumption that IIN[I c, is small enough, we can ensure that 
for all i e I~1, 

[llA~'ll(llhsl[ + 2  IINILc,)L+~+ (IIA ~ll  + 1)IlNllc,] ~<6< 1 

In such a case, the factor multiplying e~ on the right-hand side of (3.7) is 
smaller than 1; assuming we have already found ei_ t . . .  e~, we can choose 
ei big enough so that the right-hand side of the previous inequality is 
smaller than e;. | 

R e m a r k .  We emphasize that the choices of e; are always possible 
provided that IINIIc, is sufficiently small. The smallness assumptions on 
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][Nll eL are just to adjust that the derivatives of w to order L are less than 
1. We also call attention to the fact that ei only depends on [[DJN[IL.,., 
1 ~ j  ~< L + i, and that it can be made arbitrarily small by assuming that 
[]DJN[[ c~-, L + 1 ~<j ~< L + i, are sufficiently small. 

The following propositions, consequences of more general results 
whose proofs can be found in the references indicated, will allow us to 
study fixed points in X by a small modification of the contraction mapping 
theorem. 

We start by recalling Lemma 2.5 in ref. 25. 

Proposition 3.2. If we give the X's defined before the topology of 
the distance 

d(w, w')= sup IIDLw(x)--DLw'(x)I[ 
x E B S ( I )  

then the sequence closure of X~,....,:r_L is contained in 

{ w: BS( 1 ) ~-~ U, such that 

(a) w ~ C r -  I + Lipschitz 

(b) Dkw(O)=O,O<~k<~L 

(c) sup IlDkw(x)ll <~ 1 
x ~ Bs(  I ) 

(d) sup IID'-+q.v(x)ll <~ei, 1 <~i<~r--L-- 1 
.v ~ BS( I ) 

(e) Lip(D"w)<~e,. L} 

Proof. This is a particular case of Lemma 2.5 of ref. 25. We refer to 
that paper for the astute proof. We call attention to two subtle points of 
the proof: 

1. We are not considering the closure of the set Z, only the closure 
under sequences. In a nonseparable Banach space they could be different. 
Looking ahead to the argument, we note that for the contraction mapping 
principle what matters is that the sets that get mapped into themselves are 
sequentially closed. 

2. Even if this looks very similar to the Ascoli-Arzel~ theorem, it is 
not necessary to assume that the space has a countable base. 

(Of course, the proof can be greatly simplified if the space X is 
assumed to be separable and, if the space is finite dimensional, the proof 
reduces to the Ascoli-Arzelh theorem.) I 
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Our next task is to prove that the map Y is a contraction in an 
appropriate norm. We will do this by showing it is differentiable and then 
estimate the norm of the derivative. 

The fact that Y-- is differentiable can be proved using the same 
methods that ref. 16 used to show that the composition operator is differen- 
tiable in the appropriate spaces. We note that, as is well known, the com- 
position is only differentiable in C L on functions which are more differen- 
tiable. Since Y-- is obtained by applying the composition operator twice, it 
is clear that, invoking ref 16, we can obtain that J -  is differentiable in 
spaces of more differentiable functions. On the other hand, if, rather than 
quoting ref. 16, we just apply the same method there to our particular case, 
we can get by with using a derivative less. This is the content of the 
following proposition. 

Proposition 3.3. The mapping ~-- considered as a mapping from 
CL(E s, E u) to itself is differentiable in the Frechet sense at all the points 
of X" (recall that we assumed r >  L and both integers). Its differential is 

[DJ-(w) ] rl(X ) = A u l[q(As.x + Ns(x, w(x))) 

+ Dw(Asx + Ns(x, w(x))) D2Ns(x, w(x)) q(x) 

- D,_N~,(x, w(x)) q(x)] (3.8) 

Proof. For every x we have the formula 

I 

J - [ w  + r/](x) = J - [  w](x) + fo A [~ tq(Asx + Ns(x, (w + 2r/)(x))) 

I 

+fr A ~tDw(A sx + Ns(x, (w + 2q)(x))) 

x q(x) D2Ns(x, (w + 2q)(x)) q(x) d2 

- f / A  ~ ID2Nt,(x, (w + J.r/)(x)) r/(x) d2 (3.9) 

The desired result follows from interpreting the above formula as a 
formula in Banach space of functions and estimating the continuity of the 
remainders. This is the same method used in ref. 25 and we refer to that 
paper for details. | 

R e m a r k .  We note that the composition operator, considered as an 
operator in C L, is differentiable in the Gateaux sense only at functions 
which are at least C t+ t  and with a uniform continuity of the derivatives 
of high order. Other than that, it is only Frechet. 
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Remark. We also note that a similar but simpler argument can be 
used to prove that ~-- is differentiable with respect to N if N is given the 
C '  norm and Y(w,  N) the C L norm. Similarly, we note that assuming that 
w, N are given the C L+k+2 norm, it is possible to show that J -  is C ~" with 
respect to parameters. The proof  is again obtained by writing a formula for 
the derivatives and checking that by integration it gives the right answer. 
We will perform these arguments in detail in the section on dependence on 
parameters. 

Proposition 3.4. Assume that N is C" and that A satisfies the 
assumptions of Theorem 2.2. Denote by X',I, ......... /_ a set of the form (3.3) 
such that J(Z',i~ ........ t_) cz',i~ ......... ,. Assume that IqN]lc,- and that e~ are suf- 
ficiently small, where the smallness conditions depend only on the spectrum 
of the linearization, and in particular are independent of 1". Then the 
derivative in (3.8) is a contraction in ;(;;~ .......... /. in the norm of the supremum 
of D t w .  

We call attention to the fact that if the sets Z" are produced using 
Proposition 3.1, the hypotheses of Proposition 3.4 are implied by IINII cl.+, 
being sufficiently small (since, as argued in the proof  of Proposition 3.1, 
when IlNIIc,-+, is small, we can take el sufficiently small). Again, we recall 
that the assumption that IINI] ct-+~ is sufficiently small amounts to consider- 
ing a sufficiently small neighborhood. 

In summary,  if llNllc,-+~ is sufficiently small, we can use Proposi- 
tion 3.1 to obtain a set that Y-- maps into itself. We can use Proposition 3.4 
to conclude that ~-" is a contraction restricted to it. 

R e m a r k .  The fact that the smallness assumptions are independent 
of r will be crucial in the proof  of the result for C ~ manifolds. This inde- 
pendence is to be expected since we are considering a norm that only 
involves L derivatives. 

Proof .  Since the spaces X'" are convex, we can use the formula 
Y- (u )  - Y - (v )  = J~ DY--(v + s(u  - v) )(u - v) dt, and hence, to prove that #- is 
a contraction, it suffices to prove that the norm of the derivative is less 
than 1 [this formula is, of course, just (3.9)]. 

In the .formula (3.8) for the differential of Y take L derivatives with 
respect to x, and expand using the chain rule and the rules for sums and 
products (tensor products) of derivatives as often as possible. We get 
D ~ [ ( D , , . J - ) [ w ]  r/](x) as a sum of terms. The only term in this sum that 
does not contain a derivative of N i s  

A ~ I D t - q ( A s x  + N s ( x  + w ( x ) )  A s  ~ L (3.10) 
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All the other terms contain a factor which is a derivative of N of order 
not bigger than L. The factors other than derivatives of N of order up to 
L that appear in the other terms are either derivatives of r/ of order not 
bigger than L or derivatives of w of order not bigger than L + 1. 

The only terms that include a derivative of w of order L + 1 are those 
resulting from expanding 

A ~ I(DC+ tw)(Asx + Ns(x,  w(x))) 

x [As + (Dr Ns(x, w(x)) + D2Ns(x, w(x)) Dw(x))] | c 

x D2Ns(x, w(x)) q(x)) (3.11 ) 

Therefore, except for (3.10) and (3.11), all the other terms involve 
derivatives of ~/ of order not more than L, derivatives of w of order not 
more than L, and at least one factor which is a derivative of N of order not 
more than L. 

The term (3.10) can be bounded by 2 IIOLrlll,,, where 0 < 2 =  
[IAsil z_ [[A ~- ~li < 1 by assumption (iv). Hence, the linear operator defined in 
(3.10) has a norm which is strictly smaller than 1. 

To bound (3.11), we note that the L + 1 derivative of w is bounded by 
e~ and all the other derivatives of w are bounded by 1. Recalling that, since 
Dir/(0)=0 for 0~ < i~<L-1 ,  we can bound the supremum of q by 
1/L! IlOCql[ c~. Therefore, we can bound the norm of the linear operator in 
(3.11) by 

(I /L!)  e, Ila ~'ll(llAsll + 2 IIDNII L~,) IIDNII L~ 

This, clearly, can be made arbitrarily small by assuming that IIDN[Ic~ is 
sufficiently small. 

Since all the other terms include at least a factor which is a derivative 
of N of order not bigger than L and derivatives of w of order not larger 
than L and derivatives of q up to order L, the norm of all the other terms 
can be bounded by p IlqllcL, where p can be made as close to zero as 
desired by making IINIIc,- sufficiently small. That is, we can estimate the 
norm of the derivative by a number which is strictly smaller than 1 and a 
finite number of other terms that can be made arbitrarily small by assum- 
ing that [INII cL is sufficiently small. I 

Since, using Proposition 3.1 and Proposition 3.4 under the conditions 
of Theorem 2.2 we have produced a set that gets mapped into itself by 9- 
and shown that 9- is a contraction on it, applying the contraction mapping 
theorem, we conclude that there is a unique fixed point in the sequence 
closure of X". This finishes the proof of Theorem 2.2 except for the C ~, C" 
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cases. (Notice that this method automatically produces the uniqueness 
statement claimed in the theorem.) 

To prove the C ~' result, the key observation (standard in the theory; 
see refs. 25, 37) is that all the fixed points in different Z r have to agree. 

We note that given a C ~ N, Proposition 3.1 produces a sequence ei in 
such a way that all the sets X "=  ZII. . . . . . . . . .  L are mapped into themselves by ~--. 
Proposition 3.4 shows that ~-- is contractive on these sets. Hence, there is 
a fixed point in the sequence closure characterized by wr = lim ~- 'w for 
any w ~ z". Since for r ' >  r, Z"' c X", we conclude that Wr = W,.,. Hence, the 
unique fixed point has to be in all the sequence closures of Z r and, by 
Proposition 3.2, it has to be C ~ 

In Section 4 we develop some other uniqueness statements that will 
also show that the different fixed points in all the regularities have to agree. 
They provide an alternative route for this part of the proof of Theorem 2.2 
for infinite regularity. 

We emphasize that here we use essentially that S is contained in the 
unit circle. Indeed, there are examples in which the spectrum of A s  contains 
the unit circle and in which there is no C '~- invariant manifold. 

The proof of C"  regularity is simpler. We have to consider Y-- acting 
on a space of analytic functions vanishing up to order L at the origin with 
the C L norm in a complex neighborhood of the space. The same argument 
used here shows it is a contraction (the properties of the absolute value are 
the same, be it real or complex) and the uniform limit of analytic functions 
is analytic. (We refer to ref. 21, Chapter 7, for the proof of these results in 
infinite dimensions. The finite-dimensional cases are quite well known.) | 

Proposition 3.5. If S, S' are spectral subsets both of which satisfy 
the assumption of the theorem and S c S', then W S c  W s'. 

Proof .  If we consider the derivative at zero of f l w s  we see that its 
spectrum is precisely S' and clearly S satisfies the nonresonance assump- 
tions. Hence, we can find a C" manifold associated to it in the restriction 
to W s'. 

Now, this manifold can be considered as a submanifold of X, and it 
fulfills the assumptions of the uniqueness theorem. So it is W s, hence W s 
is contained in W s'. 

R e m a r k .  When X is finite dimensional the conclusion (b) of 
Theorem 2.1 can be improved to C r using the same proof. The idea for this 
improvement is to show that the sequence of functions { D r y - " [  w](x)} ,,~ o 
is equicontinuous and equibounded in n. This can be shown by introducing 
a modulus of continuity for D"w and showing that this modulus of con- 
tinuity is preserved under 9--. This is not very difficult, given the bounds 
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that we have proved already, and a similar calculation is in ref. 25. Unfor- 
tunately, this argument does not work in infinite-dimensional spaces 
because uniform continuity on the unit ball does not follow from con- 
tinuity. So another argument is needed. For the stable manifold case, C" 
regularity even in infinite-dimensional Banach spaces is proved by a dif- 
ferent argument in ref. 14. It seems that this argument can be adapted to 
our case, but since this borderline regularity in infinite-dimensional spaces 
seems specialized, we postpone for future work the discussion of this point. 
(We thank C. Pugh for bringing this point to our attention and providing 
a sketch of the proof.) We also note that the same circle of ideas can be 
used to prove the result without loss of differentiability when r is not an 
integer (C r in that case means [r]  derivatives satisfying an r - I - r ]  H61der 
condition). Since we have not included these in the statement of our 
theorems, we will not try to give a proof, but we remark that it requires 
only minor modifications from the proofs presented here. 

The following proposition, whose proof is well known, will show that 
Theorem 2.1 follows from Theorem 2.2. 

P r o p o s i t i o n  3.6. Given a C" function f satisfying assumptions (ii), 
(iii), (v), and (vi) of Theorem 2.1, there is a C"  map r with a C'" local 
inverse such that 

(i) r  = 0. 

(ii) Dr 

(iii) r o f o e  satisfies the assumptions of Theorem 2.2. 

R e m a r k .  It is possible to take r to be a polynomial. 

R e m a r k .  We emphasize that Proposition3.6 does not require 
assumption (iv} of Theorem 2.1. That is, we do not require that a(As )  is 
contained inside the unit disk. This will become crucial when we discuss 
pseudostable nonresonant sets. 

Proof. (See refs. 25, 34, 30, or 3, among many others, for very similar 
computations. ) 

We try to write r = r . . . . .  eL, where each of the r can be written as 
r I d +  r and r y) only depends on the first argument and is multi- 
linear of order i. 

The implicit function theorem shows that r has a local inverse 
( r  (x, y ) =  (x, y ) -  r  + (9( Ilxll i+1). 

Our goal is to determine r so that 

Hu(r  - ' . . . . .  (r -~ ofo r  r t(x, y)  = H v f ( y  ) + (P( IIx[I '+  ')  
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This can be achieved by finding r recursively, under the inductive 
hypothesis that ~b~v, l <  i, are already known. Substituting in the equation 
in Proposition 3.6, we see that r should satisfy an equation of the form 

r s(x))  - A ur  = h i ( x )  

where h i is a multilinear function of degree i that can be computed out of 
the previously known ones. 

These equations can be solved because the operator induced by As on 
the multilinear functions has spectrum contained in the ith set product of 
the spectrum of As. 

In the case that X is finite dimensional and A diagonalizable one can 
choose a basis for multilinear functions as the monomials of degree i in the 
coordinates in a basis of eigenvectors. The result, however, can be proved 
easily even if A is not diagonalizable and X is infinite dimensional. See, e.g., 
ref. 30. | 

R e m a r k .  We notice for future reference that the r and the r can be 
chosen in such a way that they depend in a C'" fashion on N, As, Au. 

R e m a r k .  It is not necessary to prove Theorem 2.1 using Theorem 2.2 
and performing the normal form calculation that reduces one to the other. 
Alternatively, one could write 

w(x)= ~ Diw(O) x| + w[ >t'J(x) 
i = 2  

and, taking derivatives in Y-[w] = w  at zero, derive equations for the 
Dqv(0). In effect, taking i derivatives, i ~> 2, as in (3.4) and evaluating at 0, 
we obtain 

Diw(O) = A [i tDiw(0) A.~i+  R (3.12) 

where R is an expression that involves derivatives of w evaluated at 0 of 
order not larger than i -  1 and of N of order not larger than i. Since the 
spectrum of y ~ A ~ tyA~ is SiU - t (see ref. 30), it does not contain 1 by our 
nonresonance assumptions. Hence (3.12) can be solved. 

It is easy to see that if the Diw(0) solve these equations, then 

[ L1  1 Z' l  " ~- ~ D ' w ( O )  x |  [>L] (x)=2~D'w(O)x| 

The operator J-  can be studied by the same methods used to study Y'- 
here, but the computations are much more cumbersome. Nevertheless, it 
seems that the dependence on parameter results could be improved. 
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Remark. We also point out that the method of calculation outlined 
in (3.12) is quite practical for numerical calculations. Also, it is related, as 
we will see later, so the perturbative calculations of fl functions in renor- 
malization group theory. 

4. DEPENDENCE OF THE MANIFOLDS ON THE M A P  AND 
UNIQUENESS RESULTS 

We can think of Theorem 2.2 as defining a mapping that, given any N, 
produces w. Since our point of view was to think of these results as pertur- 
bations of N - 0 ,  it is quite natural to investigate the dependence of w on 
N. Our first result on dependence on parameters is as follows. 

Theorem 4.1. Assume the conditions of Theorem2.2 as well as 
Sc~ U =  ~ and smallness assumptions in IlN]lcr. If we give the w's the C t-+k 
norm and the N's the C r norm, the mapping N--+w(N) is C "-IL+*+3~ 
provided r > L + k + 3. An analogous result holds for the invariant mani- 
folds constructed in Theorem 2.1. 

Remark. It seems that the loss of differentiability we incur in this 
theorem is not optimal. 

Proof. If we were going to prove that the mapping was differentiable, 
the most natural thing to do would be to write down explicitly the N 
dependence in #" and apply the implicit function theorem to the functional 
equation g--(w, N) = w. 

Unfortunately, this fails because in order to compute D,,,Y, the first 
derivative of w enters [see (3.4)]. However, to prove differentiability, it is 
possible to follow the strategy of the proof of the implicit function theorem, 
observing that at the solutions, the mapping #-- is differentiable with 
respect to w and, moreover, 

D Y : C L + * o  CL+k 

is a contraction. (Recall that this smallness follows from C L +* +~ smallness 
assumptions in N and in w; the latter are implied by C z'+k+2 smallness 
assumptions in N.) A very similar argument occurs in ref. 24. 

For  example, to establish that w r-~ w(N) is differentiable, we will use 
the differentiability of g-" in these spaces to construct a guess for w'(N) in 
such a way that 

U~--(w(N) + w'(N) A, N +  A) - w(N) - w'(N) An c r ~<K HA]I~.L+4 



Invariant Manifolds 231 

Then, by the fact that W- is a contraction with a uniform constant, we 
conclude that there is a fixed point for Y-(., N) which differs from 
w(N) + w ' ( N ) A  by an amount  not bigger than K IlzlllcL-. That  is, 

II w(N + ,6 ) - w(N) - w'(N) zl II c, K [1A I I ~:L +4 

Proceeding formally, we conclude that the candidate for the derivative 
has to satisfy D.,~-(w, N) rt/(N) + D N f f  = w'(N). Hence, 

w'(N) = (1 - D,,,3-) - '  D N J -  = ~. [ D,,.~-] k DNg-- 
k 

when w is a solution. The convergence of the sum follows by repeating the 
argument that lead us to conclude that D,,.3- is a contraction in C L ~  C L. 
Since the sum ~ k  [D,,.~--] k converges, the map w' is well defined and is a 
continuous function. 

Once the formal solution can be found we need to argue that it is a 
true derivative. The fact that w'(N) is the true derivative comes from the 
fact that it is continuous and, if we integrate back, 

~?(Nx)=w N o +  w ' ( N o + t ( N - N o ) )  dt 

satisfies 

9--(#(N0), No) -- #(N0) = 0 

d 
[ 9-(~(N~), N ~ ) -  ~(N~)] = 0 

so that, by the uniqueness properties established in Theorem 2.2, we have 
that k = w or that w' is a bona fide derivative of w considered as a function 
of N. 

The existence of higher derivatives can be obtained in a similar man- 
ner. We proceed by induction, assuming that we have already established 
that the formal expressions for the first j derivatives are indeed the true 
derivatives, and we will show that the formal expression for the j +  1 
derivative i~ a true derivative. 

Again, we start by observing that the j + I derivative should satisfy 

D , , J (  w, N) D j+ tw + D~ + k J-( w, N) + R = D ./+ tw (4.1) 

where R is an expression involving derivatives of ~ of order not bigger 
than j and derivatives of w of order not bigger than j. 
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Since D,,,~-- is a contraction in C t ,  it is possible to find an expression 
for D j+ ~w involving all the previously computed ones. Since this D j+l  
satisfies (4.1), it is easy to show that the term of A | in the expansion 
of 

~'(w(N) + w ' ( N )  + . . .  + [ 1 / ( j +  1)!] w Ij+' l(N) A | N + A )  

- w ( N )  + w ' ( N )  A O I / +  l) + . . .  + [ 1 / ( j+  1)!] w cj+ l) (4.2) 

vanishes. 
The validity of such an expansion can again be justified by taking 

derivatives of the expressions with respect to a parameter and noting that 
the derivatives involved are only derivatives of w up to order L + j  + 2. The 
errors can be estimated uniformly by the C t + j + 3  norm of w. But, as we 
argued before, this can be estimated by the C t+j+4 norm of N. 

-+-~ 
Therefore, the C t norm of (4.2) can be estimated by []AI]~.L;~+4. 
Hence, the fixed point of 9- satisfies similar estimates and therefore 

our formal candidate is a true derivative. 
This establishes the smooth dependence on parameters for 

Theorem 2.2. To prove smooth dependence on parameters in Theorem 2.1, 
we need only to prove that the calculations done to reduce Theorem 2.1 to 
Theorem 2.2---choosing coordinates along the spectral subspaces--depend 
smoothly on the map. But the smooth dependence of the spectral spaces on 
the linear map is a standard result in functional analysis (see, e.g., ref. 21). 
Similarly, the eliminations depend smoothly on the nonlinearity, since they 
just involve solving linear equations on the jets. | 

Note that Stn U =  ~b is used only to ensure smooth dependence of the 
subspaces. The smooth dependence of the manifold with respect to the non- 
linear part does not need this hypothesis. 

The uniqueness part of Theorem 2.2 can be considerably strengthened. 
Since this may be useful for other developments--in particular, it gives a 
second proof of the fact that fixed points in different Z" produced in 
Proposition3.1 agree, and therefore proves the C '~ conclusion of 
Theorem 2.2, we will formulate it precisely and present a proof. 

Denote by r o a number, not necessarily an integer, such that 

IIA ~'ll �9 IlAsll" < 1 

(that is, ro < log IIA ~s t [I/log IlAsll ). Then set 

Z '~ = { w: BS( 1 ) -0 EVl w(O) = O; w Lipschitz; 

Lip(wli3., . i , . i)/r I''~ ') ~ c~, 0 < r ~< 1 } (4.3) 

where Lip denotes the Lipschitz constant and for ease of notation we 
supress the dependence of X '~ on ro. 



Invariant Manifolds 233 

We observe that then, for all w in this space, 

IIw(x)ll 
IIIwll[ = sup - -  

x~0 Ilxll r~ 

is finite and, if we topologize X '~ with this norm, it is complete. (Note that 
convergence in II1' 411 implies pointwise convergence and that the uniform 
Lipschitz bounds are preserved under pointwise limits.) Notice also that all 
spaces of the form (3.3) are contained in some Z ~. Nevertheless, all the Z '~ 
contain functions which are not even differentiable and are therefore larger 
sets than the Z',i, ........ L that we introduced before. Proving uniqueness in 
(4.3) is stronger than proving uniqueness in any of the spaces in (3.3). 

Theorem 4.2. In the assumptions of Theorem 2.2 there exists a 6 
such that ~ ( ; ( ~ ) c X  '~ and J is a contraction there. Hence, the w of 
Theorem 2.2, which is actually smooth, is the only function in X '~ satisfying 
. f f --W ~ W. 

Proof, The proof is a quite straightforward calculation. We first 
show ~- is a contraction, 

[ Y u ] ( x )  - [ Y - w ] ( x )  

= A u I[ (u (Asx  + Ns(x,  u(x))) -- w (Asx  + Ns(x,  u(x)))) 

+ (w(Asx  + Ns(x,  u(x))) - w(Asx  + Ns(x,  w(x))) 

+ (N.(x,  w(x))) - N,,(x, u(x))) ] 

Taking norms and dividing by IIxII "~ we can estimate the first term by 
inserting in the numerator and denominator [ IAsx+Ns(x ,  u(x))[]"~ the 
second one uses that 

[INs(x, u(x)) - N s ( x ,  w(x))ll ~ (Lip Ns(x,  u)) IIu(x) -w(x)[]  

and that this factor can be made as small as we wish by assumption, and 
a similar aFgument works for the last. 

The proof  that 3"(X'~)cX '~ follows easily from the chain rule for 
Lipschitz constants; we have 

Lip ~--[ w[ [ e~,,.) ~< IIA ~ '11( IlAsll + Lip Ns( 1 + 6)) Lip w [ ~,.t,.. ~ 

+ Lip Nv(r  o + ~) 
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where 

r*/> sup IIAsX + Ns(x,  w(x))ll 
Ixl > r  

which up to errors arbitrarily small by suitable smallness assumptions on 
IINll,~ is just It.4sll r. 

If we now divide both sides by r r' ~, we get 

Lip 5 [  w] I A~rj 
rrO-I <~IIA~'II(IIAslI+D LipwlE'~'*~r*'''-'r,,.o- t r"'- ' 

< IlA ~'II( llmsll + Y)'~' L ip w l 8s~,..~ 
r * rO-  I 

where y denotes a number which can be made arbitrarily small by assum- 
ing smallness conditions on Lip N. | 

The following characterization of invariant manifolds is more restric- 
tive in the conditions we impose on the spectrum, but, on the other hand, 
does not make any regularity assumptions. 

This characterization roughly says that if we only consider orbits for 
which the components are bounded by a power of the S component, the S 
component determines all of them. In other words, restricted to this 
"parabolic region," the set of points that converge is a graph. Again, we 
remark that this uniqueness result gives another proof of the agreement of the 
fixed points in different g r and hence establishes the C ~ part of Theorem 2.2. 

This is quite analogous to the usual proof of the fact that the stable 
manifold (characterized only by topological properties) is indeed the graph 
of a function. 

T h e o r e m  4.3. Let f,  A, S, U be as in Theorem 2.1. Write 

r,,,c,,= { x e BS( l) l LI/-/uxll < C IIl-lsxll"} 

If p satisfies p < In Ita ?;~ II- ~/ln IIAsll, we can find l*(p) in such a way that 
if two points Xl, x2 satisfy 1-lsx t =Ilsx- ,  and {f"(xi)},,~ [any 
C>~l<l*(p)],  then xt =xz .  

Proof. We will denote e = sup.,.~Bs,) [IDg(x)ll. We will show that if e 
is small enough, which amounts to l small enough, we get the conclusions 
of the theorem. We have, if x, y e BS(l), 

Ill-Ivy(x) - HuT(y)[I >/IIa ?,'11 -~ II/-/v(x -Y)II - e ll/-/s(x-y)ll 

I IHs f (x ) -Hs( fv )H <~ IIAs[I" [IHs(x-y)[I +e IIHc,(x--Y)II 
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If we consider 

(II-4A e )" IIA ?,'11 (IIHs(N-y)LI~ 
- e  I l I I v ( x -  y) l l /  

the first component  gives 
second a lower bound for 

If  we diagonalize the 

an upper bound for IIHsf"x-f"(y)[I and the 
IIHui(f"(x) - f" (Y)) l l .  

matrix, we can see that 

IIHsf"(x) -f"(y)II • ( 11-4sll + d)"(lll-ls(x -Y)II + e' IIHu(x -Y)II)  

IIHvf"(x) - f " (Y) l l />  (11-4 ~'11 - d ) " ( [ I H u ( X  -Y)I[ - e '  IIZ-ls(x-y)ll) 

(e' depends only on e and is as small as we wish with e). 
If  we now apply this result taking x = x;, y = 0, we get 

II Hsf"(x,)1[ ~< ( 11-4 s II + g )" II I-Zsxe II 

and if we apply it with x = x~, y = x2, we obtain 

IIHv(f"(x,) -f"(x2))ll ~ (11-4 ~'11 - '  - e ) "  lIHv(x--Y)ll 

Unless [[Ho(x-y)[[ = 0 ,  this is a contradiction with the assumption 
about  the orbits of x I, x 2 satisfying IIHvf(xi)ll <~ C [IHaf(x31[ p. 1 

Remark. We note that if we have a map  satisfying the conditions of 
Theorem 2.2 and it is C "~ + ~, in a sufficiently small ball it has to be in Z a. 
The reason is because, by the nonresonance argument that we had before, 
all the derivatives up to order [ro] have to vanish. Then the fact that the 
map is in C r~ + ~" implies that the remainder of the Taylor  expansion of the 
derivative has to make it be in Z a. 

The existence and uniqueness results developed so far can be counter- 
pointed with the following examples: 

Example 4.4. The mapping (x, y)~--~(1/2x, 1/4y), besides the spec- 
tral subspa~es, has (x, x 2) as an invariant manifold. This manifold is clearly 
analytic. 

Therefore, in general there could be other invariant manifolds besides 
the ones we consider here; notice how this example violates the assump- 
tions of both of our uniqueness theorems. This example shows that the 
parameters appearing in our uniqueness theorems cannot be lowered. 

822/87/I-2-17 
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Example 4.5. Let A be diagonalizable. If the relation between 
eigenvalues 2i, . . .  2;r = 2~ holds, the map 

X ---4 A X  --}- I_t X i ~ .  �9 �9 Xi~ 

where _/~ denotes the eigenvector corresponding to 2~ and x~ denotes the 
coordinates along the directions of the eigenvectors corresponding to 2ij, 
does not have a C'  invariant manifold tangent to the invariant subspace 
spanned by the eigenvectors of 2;,-. .  2;r. 

Remark. We are not assuming 2;,--. 2,., different. 

Proof. Since in a sufficiently small neighborhood we would have that 
the manitbld would have to be a graph, it suffices to show there is no C" 
solution of ~-w = w (as in Theorem 2.1 ). 

If this w had a Taylor expansion of order r, we could match powers. 
Substituting the definitions, we see this is impossible. 

The construction can be easily modified to produce a similar coun- 
terexample when the matrix is not diagonalizable. So the nonresonance 
assumptions of our theorem are sharp. 1 

5. PARTIAL L I N E A R I Z A T I O N S  A N D  
PSEUDO-STABLE M A N I F O L D S  

The following result is proved in ref. 2. (Even if the statement of 
Theorem 1.1 of ref. 2 is only for R", the remarks along the proof make it 
clear that the result is true also for a general Banach space which admits 
smooth cutoff functions.) 

We recall that a cutoff function is a function that takes the value one 
on a ball and the value zero outside a bigger ball. For finite dimensional 
spaces, the existence of smooth cut-off functions can be proved very easily. 
On the other hand, for infinite dimensional Banach spaces, it is a non- 
trivial assumption on the space. For example, the space of continuous 
functions on the interval does not admit a C j cutoff functionJ 2~ More 
generally, a separable Banach space admits a Frechet differentiable cutoff 
function if and only if its dual is separable? 271 Any Hilbert space admits 
smooth cutoff functions. 

Theorem 5.1. Let J~g be C", r e  N, diffeomorphisms of a Banach 
space, admitting smooth cutoff functions, f ( O ) = g ( O ) =  O, and let A and B 
be numbers computed explicitly in the proof which depend only on the 
spectrum of Df(O). 
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Assume 

(i) D~f(O)=Dig(O), i = 0  ..... k < r - 1 .  

(ii) SpecDf(O)c{z~C[2S_~<~ Izl ~2+} w {zECl/~=' ~ Izl ~ + }  
for some 0 < 2  -~ < 2 +  < 1 < p - i  < p + .  

Then, provided that 1 ~ l < k A -  B, for some integer l, we can find a 
C ~ diffeomorphism h such that 

h -I o f o h = g  

on a neighborhood of the origin, h (0 )=  0, Dh(O)= Id. 

This paper also contains explicit expressions for the numbers A and B 
in terms of 2+_,p_+, which undoubtedly are not optimal (indeed, ref. 2 
sketches the proof of some better number for finite-dimensional spaces), 
but there are examples that show that one cannot get the conjugating map 
to be as smooth as the order of tangency. 

The way that these cutoff functions enter in the proof is in the obser- 
vation that, if ~b is a cutoff function, setting 

.f(x) = r  + (1 -- r - - f (x))  

we find that the function j~ is identical with f in a neighborhood of the 
origin and is globally close to N. In particular, when f is tangent to N to 
a high order in the origin, )7 is tangent to a high order to N in the origin 
and globally close to N. 

In the case that we have considered in this paper the graph transform 
operator mapped functions defined in a ball into functions defined in a 
bigger set. If A s was not strictly contractive, this would not be the case and 
then we would have to deal with functions defined everywhere. But then it 
is necessary to have global proximity assumptions. 

The meaning of Theorem 5.1 is that, if we get maps which are hyper- 
bolic and tangent to one another to a high enough order, we can make a 
change of variables that is moderately smooth in such a way that they 
become exactly the same. 

Recall that given the nonresonance conditions, Proposition3.6 
allowed us  to make a change of variables in our original map in such a way 
that it had the form (2.1) 

f(s ,  u) = (Ass + Ns(s, u), Asu + Nv(s,  u)) + O( lul L + ,, Is[-~) 

We can apply Theorem 5.1 to f and to g defined by 

g(s, u) = (Ass + Ns(s, u), A vu + Nu(s, u)) 
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Notice that, as already noted in the remark after Theorem 2.2, the map 
g leaves invariant the manifold u = 0. Hence the manifold W =  h( { (s, 0)} ) is 
invariant under f. 

Note that the method of partial linearization has the advantages that 
it gives more detailed dynamical information and that it can deal with non- 
resonant subsets that have components on both sides of the unit circle. 

On the other hand, note that the partial linearization method requires 
that the map we consider is hyperbolic and invertible, the manifolds thus 
considered are not unique under natural hypotheses, and the regularity of 
the invariant manifolds is only a fraction of the regularity of the map. 

As we have mentioned, the regularity conclusions of the partial linear- 
ization method can be considerably improved in the case that the non- 
resonant spectral subsets are inside the unit circle. In ref. 2, Theorem 5.1 
shows that the regularity of the conjugacy--and a f o r t i o r i  that of the 
invariant manifolds--is C " -  for C" mappings. Presumably this is not the 
limit of the method, since ref. 2 was more concerned with the preservation 
of geometric structures than with regularity issues. In the case that the 
spectral subset straddles the unit circle, presumably the regularity of the 
invariant manifolds is not any better than a fraction of that of the original 
map, even if the exact value of the fraction is better than that of the partial 
linearization--and undoubtedly better than that in Theorem 5.1. 

From the numerical or perturbative point of view the graph transform 
method only requires that we deal with functions in E s, whereas the partial 
linearization method requires we deal with functions defined on X. 

6. O T H E R  R E S U L T S  

In this section we discuss other results in the literature that are also 
concerned with obtaining invariant manifolds on spectral subspaces that 
are not disks or complements of disks. 

In ref. 7 there is a proof of Theorem 2.1 in the particular case that the 
invariant subspace is one-dimensional. The method used there, very dif- 
ferent from ours, gives not only the invariant manifold, but also a 
parametrization of it in which the motion is linear. The method presented 
in this paper can be readily implemented on a computer for analytic 
mappings. 

P6schel ~ considers finite-dimensional analytic maps and sets S of 
eigenvalues that satisfy a Diophantine condition, 

IA,,...A,,-XjI>~Y2(n), i I ..... i , , e S ,  j e  [0, d] (6.1) 
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where/2 is a decreasing function satisfying the so-called Brjuno condition, 

• 2 - "  In f2(2") < m 
n =  l 

[ F o r  example, O ( n ) = K n - " ,  the standard condition of the Diophantine 
approximation, satisfies the Brjuno condition.] The conclusions are not 
only that there exists an invariant manifold, but also that the motion on it 
is conjugate to its linear part. Note that the above result applies even when 
the eigenvalues in S lie on the unit circle. In that case, condition (6.1) 
amounts to a Diophantine condition among the angles of the rotation. It 
also applies to situations when some eigenvalues 2 are inside the unit circle 
and others outside. In the case that all the eigenvalues are inside the unit 
circle, the conclusions are stronger than those of Theorem 2.1--they also 
include equivalence to the linear par t - -bu t  so are the hypotheses. 

Sometimes one can even get invariant manifolds corresponding to 
eigenspaces of eigenvalues 1. Since 1 leads to resonances, Example 2 shows 
that one cannot have a general theorem concluding the existence of an 
invariant manifold for all such maps. On the other hand, if the system con- 
tains several parameters or if there is an internal symmetry, one can some- 
times have results for some values of the parameter. (They are harder to 
prove, since one does not have that the linear part is contractive.) Such 
extra parameter problems or symmetries appear naturally in celestial 
mechanics, for example, in the study of "invariant manifolds at infinity." 
With these motivations, the case of a nilpotent block corresponding to an 
eigenvalue one is considered in ref. 7. Fontich ~ t2~ finds necessary and suf- 
ficient conditions for the existence of analytic invariant manifolds tangent 
to eigenvalues equal to 1 in H6non-like mappings. Again they are of finite 
codimension. It seems that similar phenomena appear in the applications of 
renormalization group in field theory. In the language of field theory, the 
eigenvalues with modulus 1 are called "marginal." Very often they are 
precisely 1. (See, e.g., ref. 13 for more details about this problem in field 
theory.) 

7. S O M E  A P P L I C A T I O N S  

In this section we describe three applications of these nonresonant 
manifolds. 

Two of them (beta functions of renormalization group and inter- 
mediate foliations) are explained in the literature. The third one-- lack of 
smoothness of invariant circles in Hopf  bifurcation--is presumably known 
to experts. Hence, we will be somewhat sketchy. 
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7.1. Renormal izat ion Group in Field Theory  

As a first application we call attention to ref. 23, where some applica- 
tions to field theory/statistical mechanics are described (as a matter of fact, 
the present paper was partly motivated by this application). To a large 
extent, in this section we will just summarize some of the points made in 
ref. 23. We apologize in advance for any excessive oversimplification or 
inaccuracy. 

Since the precise definition of renormalization operators as differen- 
tiable maps in appropriate Banach spaces has not been achieved except in 
some restricted class of models, it is worthwhile to consider finite-dimen- 
sional situations that have features similar to the full renormalization 
group. This can be justified by the belief that the number of relevant 
parameters of a model is finite and, indeed, small. This belief is one of the 
main conclusions of renormalization group theory and, indeed, has been 
verified in many cases either empirically or by studying specific models 
rigorously. 

Hence, following ref. 23 and many other papers in renormalization 
theory, we will present some rigorous results for these finite-dimensional 
applications and will not discuss how they can be derived from more 
fundamental models. Since the gist of the results is that things are more 
pathological than sometimes expected, it seems that there is hope that 
similar results will hold in more realistic models. 

Hence, we consider a renormalization transformation defined on a 
finite-dimensional space. This transformation is supposed to describe how 
the relevant parameters of the model change when we change the scale of 
the description. This transformation will be assumed to have one trivial 
fixed point that describes the high-temperature phase and a nontrivial fixed 
point that describes a phase transition. 

When a model converges to a nontrivial fixed point it is natural to 
consider relevant parameters which lie along the eigenspaces of the 
linearization. As we converge to the fixed point all the relevant parameters 
can be expressed as a function of the one that is decreasing more slowly. 
This function is usually called the fl function. We note that these fl func- 
tions give the behavior of the model close to the renormalization. That is, 
they give the leading order in the fluctuations when the renormalization 
has been applied many times. Given their importance, these fl functions 
have been computed in many models. The favorite method of calculation 
assumes a power series expansion and matching coefficients. 

In a more dynamic language, the fl functions are such that their 
graphs contain trajectories approaching the fixed point. That is, they are 
invariant manifolds. Since we are using the parameter that is converging 
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the slowest to the fixed point as an independent variable, these manifolds 
will be tangent to the eigenspace corresponding to this parameter. 

The results of this paper show that, assuming that the nonresonance 
conditions of Theorem 2.1 are met by the renormalization group transfor- 
mation at the fixed point, these smooth p functions are uniquely deter- 
mined and are the smooth invariant manifolds that we have described. 
Indeed, the calculation of the coefficients of the fl functions is done in the 
way that we have described in (3.12). 

The unfortunate part is that, if we take the calculation of coefficients 
of the fl function too far--which amounts to considering very smooth 
invariant manifolds--our uniqueness result apply. Hence, these smooth 
invariant manifolds are the smooth invariant manifolds we have con- 
sidered. In particular, if we pick a model at random, it is very unlikely that 
it will be on this manifold. That  is, its behavior under renormalization will 
not correspond to all the coefficients of the fl function. In other words, for 
most of the models, the fl function will not be very differentiable at the 
origin. 

This argument does not exclude that the smooth /3 function can be 
used to describe the leading behavior of models, but, of course, the error 
terms would have to be big enough not to conflict with the previous 
argument. (We indeed think that some results along these lines could be 
proved, but this will take us far from the present goal.) 

We refer to ref. 23 for further details and clarifications on these finite- 
dimensional models and their relevance. 

7.2. Lack of Smoothness of Invariant Circles with 
Periodic Orbits 

As a second application, we consider invariant circles in the plane con- 
sisting of heteroclinic orbits. 

These circles appear naturally after a Hopf  bifurcation. When the rota- 
tion number of the invariant circle is rational, there is at least one periodic 
orbit and, indeed, one expects to have two periodic orbits, one stable and 
one unstable. This will be the situation that we consider. We point out that 
our considerations apply without any change when there are more than 
two hyperbolic periodic orbits, but the case of just two is the one that 
appears most often and the notation is somewhat simpler. 

We will show that, using the theory developed in this paper, we should 
expect these circles to be only finitely differentiable and that indeed there 
are finite calculations--which can be carried out either perturbatively or 
with a finite-precision computer- - tha t  exclude certain regularities. 
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More precisely, we will consider a circle which consists of two periodic 
orbits P =  {Pl ..... p,,} and Q =  {q, ..... q,,} and manifolds connecting them 
as described below. 

We will h a v e f ( p ; ) = P i + l ,  f ( q i ) =  q~+l with the sums in the subindices 
understood mod n. Hence f " (p~)=Pi ,  f " (q i )=  q~. We will assume that the 
orbit P has one stable direction and an unstable one, while the orbit  Q is 
completely stable: 

Spec( Df"(p~) ) = { 2 ~', kt"} 

Spec( Df"( q ~) ) = { 2 q, i~u } 

We will assume 

I~1,  I~q < 1, I~"1 < l, I~1 > 1, I~1 �9 I~"1 < 1 

To avoid unnecessary complications, we will aslso assume that the map f 
is C ~s-. 

We will furthermore assume that the unstable manifold of P is con- 
tained in the stable manifold of Q. Hence, the unstable manifolds of P 
together with Q form an invariant circle. 

Such situations arise after a Hopf  bifurcation. If the rotation number  
on the invariant circle is a rational number, we have a periodic orbit, and 
if it is hyperbolic, we should have another one. In a generic situation we 
will just have two. (There are constructive calculations that in explicitly 
known cases can lead to the conclusion that there are just two periodic 
orbits.) 

We recall that the standard proof  of the Hopf  bifurcation for maps 
consists in making transformations to a normal form that can be expressed 
in polar coordinates as (r '  = f ( r ,  e), 0' = 0 + co(r, e)) and the error terms are 
of the order r 'v, where N is the order of the smallest resonance. In this case 
we have 

2 " = l - c , v / ~ e + O ( e ) ;  2 q = - l - c , v / ~ e + O ( e )  

I/~ p''I - 1[ = O(g N/2) 

where e is the bifurcation parameter,  N is the order of the smallest 
resonance in the bifurcation (it is at least 4), and c~ is a positive constant. 
Hence, the assumption [2r[ - [/~q[ < 1 is certainly true for small values of  the 
perturbation parameter. 

The standard theory of normally hyperbolic manifolds ~ Io. t t.36.37~ shows 
that this situation is structurally stable. In particular, the invariant circles 
continue to exist. Moreover, we claim that the invariant circle is C ''-'~, 
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V~ > 0, r0 = log I),ql/log [/zql. This follows directly from the method of refs. 
10, 11. The method of ref. 37 seems to produce slightly smaller results if 
applied naively. The numerator will just be the logarithm of the smallest 
normal contraction, which could involve the periodic orbit P. Nevertheless, 
we can argue as follows. Consider the invariant set that is outside a small 
neighborhood of P. This set is invariant. By replacing the map by a suf- 
ficiently high iterate, we can obtain that the normal contraction and the 
tangential contraction are given by numbers as close to the stable and 
unstable eigenvalues of Q as desired. This establishes the claim of regularity 
outside of a neighborhood of P, but on a neighborhood of P the circle has 
to agree with the unstable manifold of P, hence it is C ~-~. 

We want to show how the theory of nonresonant manifolds developed 
in this paper allows us to obtain computable conditions that show that this 
manifold is not C "~ § 

Since our goal is to exclude that the circle produced by Hopf  bifurca- 
tion is C rc'§ in concrete cases, we proceed by contradiction. 

We assume that it is C"' and then derive numerical facts that should 
hold. Given a concrete map, these numerical facts can be refuted by a 
finite-precision calculation. We can also show that they hold only in sets of 
infinite codimension. 

We will distinguish two cases, In 12Pl/ln Iprl r ~ and In I),Pl/ln I~Pl ~ N. 
The first case is the generic one. We will refer to it as the nonresonant case. 

The linear map Df"(p~) has exactly two invariant subspaces, one of 
them associated to 2 r and another one to/z r. In the nonresonant case there 
are two one-dimensional invariant subspace for Df". Each of them has a 
one-dimensional nonresonant invariant manifold. 

Of course the manifold associated to 2 I' is the well-known strong 
stable manifold. We also note that in the circles that appear after the Hopf  
bifurcation the unstable manifold of Q does not agree with the strong 
stable manifold of P. 

As we argued in Theorem2.1, these are the only C L invariant 
manifolds in a neighborhood of P. To show that the circle is not C/-, we 
just need to show that these two nonresonant manifolds of P do not agree 
with the unstable manifold for Q. 

For  the point of view of numerical applications we point out that, 
given an explicit map, the nonresonant manifolds and the unstable ones are 
numerically computable with high accuracy by a finite calculation and it is 
possible to show that they do not agree using also a finite calculation. In 
practice, this is not even a difficult calculation and using the algorithms in 
ref. 8, one can get very high precision using only moderate effort. Similarly, 
a perturbative calculation carried out with error estimates can be used to 
establish that they do not agree. 
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From the theoretical point of view, since we have formulas for the 
derivatives with respect to the map, it is easy to show that even if they 
agree for a particular map, this agreement will be destroyed for generic per- 
turbations. (Note that the derivatives with respect to N at one point are 
expressed as sums of functions related to the perturbation evaluated at 
iterates of the map. For  the stable manifold we need forward iterates and 
for the unstable ones we need backward iterates. It is clear that the sums 
of perturbations in forward iterates do not agree with the sums over back- 
ward iterates. ) 

The resonant case can be handled similarly, but one needs to dis- 
tinguish different possibilities. The strong stable manifold of P still exists 
and is smooth, but it is possible to check that it does not agree with the 
unstable manifold of Q. Unless there is certain combination of derivatives 
that vanish, there is no C "  intermediate invariant manifold and, of course, 
we are done showing that the circle is not C" +'~. If this combination of 
derivatives vanishes, then, as we showed, there is an intermediate nonreso- 
nant manifold, but the same arguments as in the nonresonant case may be 
used to exclude that it agrees with the unstable manifold of  Q and, as 
before, this leads to the circle not being C "  + '~ 

7.3. Nonresonant  Invariant  Foliations 

As a third application we discuss the possibility of extending these 
results to invariant foliations. Given a diffeomorphism f on a compact  
manifold, it is a standard construction 1~4"37'3s~ to consider the operator  97 
acting on C o vector fields by 

(frv)(x) = exp.,_-' f(exp/-,,_,.,(v(f-I(x))) 

where exp.,.v(x) denotes the differential geometry exponential map 
obtained by flowing for a unit of time the geodesic with initial conditions 
x, v(x). [-It is useful to think of exp.~ v(x) as x+v(x) .  Indeed this is what 
it amounts to in Euclidean space.] 

It is not difficult to check that if [[vllc. is sufficiently small, f is well 
defined. 

Moreover, 

[ Df(0) ] = f *  

where f *  is the pushforward 

[f*v](x)  = D f ( f  - 'x)  v ( f  -l(x)) 
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The spectrum of f *  in the complexification of C O vector fields (to 
study spectral properties, it is much better to have a complex space) has 
been intensively studied since ref. 39. In that paper it is shown that i f f  is 
an Anosov system, the spectrum consists of annuli. Moreover, quite 
remarkably, the spectral projections associated to each of the annuli 
correspond to projections over a subbundle. As a corollary of this last 
property, we obtain that the number of annuli is at most the dimension of 
the space. 

Hence, if a subset of these annuli satisfies the nonresonance conditions 
of Theorem 2.1 we can obtain nonresonant invariant manifolds for f For 
the case of an annulus this nonresonant invariant manifold is constructed 
directly in ref. 31. In the case where the nonresonant set is the whole stable 
component (resp. the annuli within a ball of radius p < 1) this is the way 
that stable (resp. p stable) foliations are constructed in refs. 14, 37. The 
theorems in this paper allow us to carry out these constructions for non- 
resonant sets of the Mather spectrum that consist of several annuli. 

Unfortunately, the geometric interpretation of the nonresonant 
invariant manifolds for )7 is more complicated than that of the stable (or p 
stable ones). 

The nonresonant invariant manifolds for j7 correspond to "invariant 
leaf fields," that is, maps that to each point x associate a leaf L, .--a dif- 
feomorphic image of a disk--in such a way that 

f(L,-)  c Lr(x) 

T_,.L,.=E~,. 
(7.1) 

(The proof consists in walking through the proof of the nonresonant 
manifold checking that all the steps are bundle maps. Fuller details can be 
found in ref. 31 for the one-annulus case or in ref. 19 or in lecture notes by 
the author. In any case, these details can be more or less found in ref. 38.) 

The regularity and uniqueness statements in Theorem2.1 carry 
through to show that the leaf fields are characterized uniquely by (7.1) and 
by having C/- leaves. The result in Theorem 2.1 implies that the leaves L,. 
a r e  C " -  I §  if the map is C". (It can be improved to C".) 

In the case of the stable manifold (p-stable manifold) it is possible to 
show that these leafs are a foliation because 

ye  U f-"(L,)<~d(f"(x),f"(Y))<~K,,y 2'' 
n >~O 

(resp. <~K.,..,.p") and this is clearly an equivalence relation. 
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Unfortunately, this argument does not carry through for general non- 
resonant manifolds and indeed the conclusions are false. In ref. 19 there are 
examples where these leaf fields fail to be a foliation in a very strong sense. 
For a generic map f any neighborhood contains intersections of leaves. 

There is another twist to the discussion of invariant foliations corre- 
sponding to these invariant sets. There is another construction of invariant 
manifolds that correspond to spectral subsets. For  example, Irwin ~t6"~7) (a 
more modem version with several extensions is given in ref. 24) constructs 
invariant manifolds (usually called pseudo-stable) associated to spectral 
sets of the form {z e C llzl ~< p} with p > 1 for maps that are globally close 
to linear. Moreover, it is also shown that these manifolds admit charac- 
terizations by the speed at which points escape to infinity. Indeed, we have 
x e  W,,r  <K.,_p". 

By taking intersections of these manifolds with strong stable manifolds 
of the inverse it is possible to obtain invariant manifolds associated to spec- 
tral subsets of the form { z e COp_ ~< IzT ~< p + }. We emphasize that the con- 
struction of Irwin manifolds does not involve nonresonance conditions. 

The somewat surprising fact is that these Irwin manifolds are not the 
same as those constructed in this paper even in the case where the 
manifolds in this paper  can be defined. In ref. 24 one can find examples 
where these Irwin manifolds are not smooth and therefore do not coincide 
with the smooth nonresonant manifolds constructed in this paper. 

The Irwin construction can be lifted to maps on manifolds to produce 
invariant foliations (we will anon justify why this is the case). This seems 
to require extra properties of the manifold. Sufficient conditions are that 
the manifold has N" as universal cover and that the map is globally close 
to linear. This is in contrast with the nonresonant leaf fields constructed 
using the results in this paper. These nonresonant leaf fields can be con- 
structed in any manifold and such that they have for any map  that whose 
Mather spectrum satisfies the nonresonance conditions. An example when 
both constructions can be carried out is perturbations of linear auto- 
morphisms of the torus with a nonresonant spectrum. 

When the Irwin construction can be carried out for maps on a manifold, 
it leads to foliations (it turns out that ),~ W'~:[rwi"e,d(f"(x)-f"(y))<~ 
C.,. ,.p'+, n >~ 0, with f i n  the universal cover, which is an equivalence relation, 
so that it indeed is a foliation), but the leaves may be significantly less 
smooth than the m a p - - t h e  degree of differentiability is related to the gaps 
of the Mather spectrum. Note also that the characterization above shows 
that any homeomorphism of the manifold conjugating the dynamics of two 
diffeomorphisms sends the Irwin manifolds of one into those of the other. 

In summary, the construction of nonresonant invariant manifolds in 
this paper can be lifted to all manifolds; it produces leaf fields of smooth 
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leaves that, in a generic case, fail to be foliations. Moreover, there is 
another natural construction (Irwin's) that only works on certain 
manifolds and for certain maps, but which produces foliations with leaves 
that are not smooth. We refer to ref. 24 for the theory of Irwin manifolds 
and to refs. 24 and 14 for examples of nonsmooth Irwin manifolds of non- 
resonant leaf fields that are not foliations. These examples occur even in 
situations where both constructions can be carried out. Some of these 
examples are rather explicit and were used in ref. 25 as counterexamples to 
other questions. 
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NOTE ADDED IN PROOF 

I would like to call to the attention of the reader that M. E1 Bialy has 
written a proof of C'  regularity for the manifolds rather than the C r -  1 + Lip 
in this paper. I also became aware of the paper: T. R. Young, C k smooth- 
ness of invariant arcs in a global saddle-node bifurcation, Jour. Diff. Eq. 
126:62-86 (1996), which studies the application in Section 7.2 by other 
methods but reaches similar conclusions. 
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